初识多分辨分析

Dezeming Family

2022年4月25日

DezemingFamily 系列书和小册子因为是电子书,所以可以很方便地进行修改和重新发布。如果您获得了 DezemingFamily 的系列书,可以从我们的网站 [https://dezeming.top/] 找到最新版。对书的内容建议和出现的错误欢迎在网站留言。

目录

_	介绍	定义	1
	1 1	多分辨分析的定义	1
	1 2	一些推论	1
	1 3	小波方程	2
=	扩张		2
		$\phi(t)$ 的扩张方程 $\dots\dots\dots\dots$	
	2 2	尺度滤波器 h_k	3
		小波函数的扩张方程	
	2 4	小结	4
参:	考文南		4

一 介绍与定义

多分辨分析及推导出的一系列理论是做小波分析的重要基础。我们前面已经见到了 Haar 小波的基本思想,但 Haar 小波作为一个分析工具过于简单,而且性质并不好(我们以后会提到),而通过多分辨分析得到的香农小波以及 Daubechies 小波才是真正应用更广泛的小波。

多分辨分析又叫正交多分辨分析,因为得到的小波都是正交小波。本文旨在了解多分辨分析的精髓和 基本思想。

前面在求内积时,我们在很多步骤上故意忽略了复数函数(毕竟 Haar 小波变换不需要复数),现在我们要变得更严谨一些:

$$\langle f(t), g(t) \rangle = \int_{\mathbb{R}} f(t) \overline{g(t)} dt$$
 (-.1)

11 多分辨分析的定义

如果 $\{V_i\}_{i\in\mathbb{Z}}$ 满足下面的条件:

$$\mathcal{V}_i \subset \mathcal{V}_{i+1} \quad (nested)$$
 (-.2)

$$\overline{\bigcup_{i \in \mathbb{Z}} \mathcal{V}_i} = \mathcal{L}^2(\mathbb{R}) \quad (density) \tag{-.3}$$

$$\bigcap_{j \in \mathbb{Z}} \mathcal{V}_j = \{0\} \quad (separation) \tag{-.4}$$

$$f(t) \in \mathcal{V}_0 \iff f(2^j t) \in \mathcal{V}_j \quad (scaling)$$
 (-.5)

$$\{\phi(t-k)\}_{k\in\mathbb{Z}} \text{ is an } O.N.B \text{ of } \mathcal{V}_0 \quad (constructive)$$
 (\$\to\$.6)

则称 $\{V_i\}_{i\in\mathbb{Z}}$ 是 $\mathcal{L}^2(\mathbb{R})$ 上的一个多分辨分析 (multiresolution analysis, MRA)。

上面的五个性质依次可以描述为嵌套性 (nested)、稠密性 (density,构成整个空间)、唯一性 (separation,所有空间一起的并集为 $\{0\}$)、尺度伸缩性 (scaling,即一个 \mathcal{V}_j 内的信号伸长一倍以后,就会被挤入 \mathcal{V}_{j-1} ; 收缩一倍后,就会被挤入 \mathcal{V}_{j+1}) 以及可构造性 (constructive,可以由标准正交基来表示)。

对于 $\phi(t)$ (注意标准基 \mathbb{R} 上积分并不一定为 1,而是与自己的内积为 1,比如 $\phi_{1,0}(t)$ 在 \mathbb{R} 上积分为 $\frac{\sqrt{2}}{2}$):

$$\int_{\mathbb{R}} \phi(t)dt = 1 = \sqrt{2\pi}\widehat{f}(0) \tag{-.7}$$

右边的等号是因为根据傅里叶变换:

$$\widehat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(t)e^{-i\omega t}dt \Longrightarrow \widehat{f}(0) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(t)dt \tag{--.8}$$

12 一些推论

对于 ν_i 空间的一组标准正交基为:

$$\{\phi_{(j,k)}(t)\}_{k\in\mathbb{Z}} = \{2^{\frac{j}{2}}\phi(2^{j}t - k)\}_{k\in\mathbb{Z}} \tag{-.9}$$

$$||\phi_{(i,k)}(t)|| = 1$$
 (-.10)

当然这并不是唯一的一组标准正交基,比如我们将 V_j 空间分解为 V_{j-1} 和 W_{j-1} 空间(尽管在多分辨分析中还没有定义,但我们前面接触过),则 V_j 空间的一组标准正交基就可以写为:

$$\{\phi_{(j-1,k)}(t), \psi_{(j-1,k)}(t)\}_{k \in \mathbb{Z}} = \{2^{\frac{j-1}{2}}\phi(2^{j-1}t-k), 2^{\frac{j-1}{2}}\psi(2^{j-1}t-k)\}_{k \in \mathbb{Z}}$$
 (-.11)

$$||\phi_{(j,k)}(t)|| = 1, \quad ||\psi_{(j,k)}(t)|| = 1$$
 (-.12)

我们还没有在 MRA 中引入 $\psi(t)$ 函数,所以上面仅仅作为一个了解。

标准正交基需要满足正交性,也就是:

$$\langle \phi_{(j,k)}(t), \phi_{(j,l)}(t) \rangle = \int_{\mathbb{R}} \phi(u) \overline{\phi(u - (l - k))} du$$

$$= \langle \phi(u), \phi(u - (l - k)) \rangle$$

$$= \begin{cases} 1, & l = k \\ 0, & otherwise \end{cases} (-.13)$$

对于 $f(t) \in \mathcal{V}_i$, 函数可以写为:

$$f(t) = \sum_{k \in \mathbb{Z}} c_k \phi_{(j,k)}(t) \tag{-.14}$$

$$c_k = \langle f(t), \phi_{(j,k)}(t) \rangle \tag{-.15}$$

13 小波方程

对于 $f_{i+1}(t) \in \mathcal{V}_{i+1}$, 将其投影到 \mathcal{V}_i 空间, 求差值:

$$g_j(t) = f_{j+1}(t) - f_j(t)$$
 (-.16)

得到的 $g_j(t)$ 函数不但是属于 W_j 空间的函数,而且是 $f_{j+1}(t)$ 到 W_j 空间的正交投影。通过小波函数定义 W_i 空间的标准正交基:

$$\{\psi_{(j,k)}(t)\}_{k\in\mathbb{Z}} = \{2^{\frac{j}{2}}\psi(2^{j}t - k)\}_{k\in\mathbb{Z}} \tag{-.17}$$

且在《从 Haar 小波认识小波空间》中我们已经介绍过:

$$\mathcal{V}_{j+1} = \mathcal{V}_j \oplus \mathcal{W}_j \tag{-.18}$$

这些在多分辨分析中也是满足的。

二 扩张方程

扩张方程是小波分析中塔式分解算法的基础,理解扩张方程是理解小波分析和快速小波算法的关键。

21 $\phi(t)$ 的扩张方程

Haar 小波的扩张方程 (dilation equation) 是我们根据图示和 Haar 小波的特点来推出的,现在我们给出更一般的扩张方程推出形式,不再局限于 Haar 小波。

设 $\phi(t)$ 是 \mathcal{V}_0 空间的尺度函数,由于 $\mathcal{V}_j \subset \mathcal{V}_{j+1}$,所以 $\phi(t) \in \mathcal{V}_1$,因此可以得到:

$$\phi(t) = \sum_{k \in \mathbb{Z}} h_k 2^{\frac{1}{2}} \phi(2t - k) \tag{\Box.1}$$

$$h_k = \langle \phi(t), \phi_{(1,k)}(t) \rangle$$
 ($\stackrel{-}{-}$.2)

这里的 h_k 被称为尺度滤波器 (scaling filter), 我们后面再解释。

我们用 $t \leftarrow 2^{j}t - l$ 来代替上式,得到:

$$\phi(2^{j}t - l) = \sum_{k \in \mathbb{Z}} h_{k} 2^{\frac{1}{2}} \phi(2(2^{j}t - l) - k)$$
$$= \sum_{k \in \mathbb{Z}} h_{k} 2^{\frac{1}{2}} \phi(2^{j+1}t - (k+2l))$$

♦ m = k + 2l, y = m - 2l:

$$\phi(2^{j}t - l) = \sum_{(m-2l)\in\mathbb{Z}} h_{m-2l} 2^{\frac{1}{2}} \phi(2^{j+1}t - m)$$

因为 k 可以取遍全部整数, 所以:

$$\phi(2^{j}t - l) = \sum_{m \in \mathbb{Z}} h_{m-2l} 2^{\frac{1}{2}} \phi(2^{j+1}t - m)$$

两边同时乘以 $2^{\frac{1}{2}}$, 就能得到:

$$2^{\frac{j}{2}}\phi(2^{j}t - l) = 2^{\frac{j}{2}} \sum_{m \in \mathbb{Z}} h_{m-2l} 2^{\frac{1}{2}}\phi(2^{j+1}t - m)$$

$$\Longrightarrow \phi_{(j,l)}(t) = \sum_{m \in \mathbb{Z}} h_{m-2l} 2^{\frac{j+1}{2}}\phi(2^{j+1}t - m)$$

$$= \sum_{m \in \mathbb{Z}} h_{m-2l}\phi_{(j+1,m)}(t)$$
($\stackrel{-}{-}$.3)

我们先不追究上式的理解,而是先探究一下 h_k 的一些性质。

22 尺度滤波器 h_k

由于:

$$\langle \phi_{(j,k)}(t), \phi_{(j,l)}(t) \rangle = \begin{cases} 1, & k = l \\ 0, & otherwise \end{cases}$$

$$\langle \phi_{(j,l)}(t), \phi_{(j+1,k)}(t) \rangle = \langle \sum_{j=1}^{n} h_{m-2l} \phi_{(j+1,m)}(t), \phi_{(j+1,k)}(t) \rangle$$

$$(\Box.4)$$

$$\langle \psi_{(j,l)}(t), \psi_{(j+1,k)}(t) \rangle - \langle \sum_{m \in \mathbb{Z}} h_{m-2l} \psi_{(j+1,m)}(t), \psi_{(j+1,k)}(t) \rangle$$

$$= \sum_{m \in \mathbb{Z}} h_{m-2l} \langle \phi_{(j+1,m)}(t), \phi_{(j+1,k)}(t) \rangle = h_{k-2l} \qquad (\text{-}.5)$$

所以可以由扩张方程导出:

$$\phi(t) = \sum_{k \in \mathbb{Z}} h_k 2^{\frac{1}{2}} \phi(2t - k) \tag{\Box.6}$$

$$\int_{\mathbb{R}} \phi_{(0,l)}(t) \overline{\phi(t)} = \int_{\mathbb{R}} \sum_{k \in \mathbb{Z}} h_k \phi_{(0,l)}(t) \overline{\phi_{(1,k)}(t)} dt$$

$$= \sum_{k \in \mathbb{Z}} h_k \int_{\mathbb{R}} \phi_{(0,l)}(t) \overline{\phi_{(1,k)}(t)} dt$$

$$= \sum_{k \in \mathbb{Z}} h_k h_{k-2l} = \begin{cases} 1, & l = 0 \\ 0, & otherwise \end{cases} \tag{\Box.7}$$

令上式的 l=0, 即可得到:

$$\sum_{k \in \mathbb{Z}} h_k^2 = 1 \tag{2.8}$$

还有一个性质:

$$\phi(t) = \sum_{k \in \mathbb{Z}} h_k 2^{\frac{1}{2}} \phi(2t - k)$$

$$\int_{\mathbb{R}} \phi(t) dt = \int_{\mathbb{R}} \left(\sum_{k \in \mathbb{Z}} h_k 2^{\frac{1}{2}} \phi(2t - k) \right) dt$$

$$= \sum_{k \in \mathbb{Z}} h_k \int_{\mathbb{R}} \left(2^{\frac{1}{2}} \phi(2t - k) \right) dt = \sum_{k \in \mathbb{Z}} h_k \times \frac{\sqrt{2}}{2}$$

$$\implies \sum_{k \in \mathbb{Z}} h_k = \sqrt{2}$$

$$(\Xi.9)$$

注意:

$$\int_{\mathbb{R}} 2^{\frac{1}{2}} \phi(2t) = 2^{\frac{1}{2}} \int_{\mathbb{R}} \phi(2t) = 2^{\frac{1}{2}} \frac{1}{2} = \frac{\sqrt{2}}{2}$$
 (\square .10)

23 小波函数的扩张方程

小波函数 $\psi(t)$ 是 W_0 空间的函数,由于 $W_0 \subset V_1$,因此 $\psi(t) \in V_1$:

$$\psi(t) = \sum_{k \in \mathbb{Z}} g_k 2^{\frac{1}{2}} \phi(2t - k)$$
 (\square .11)

$$g_k = \langle \psi(t), \phi_{(1,k)}(t) \rangle \tag{\Box.12}$$

其中, $\{g_k\}_{k\in\mathbb{Z}}$ 我们以前在 Haar 小波中定义过:

$$\psi_{(j,k)}(t) = 2^{\frac{1}{2}}\psi(2^{j}t - k) \tag{\Box.13}$$

我们给出:

$$g_k = (-1)^k h_{1-k}, \quad k \in \mathbb{Z} \tag{\Box.14}$$

注意该式并不是唯一的,有些时候小波分析里会给出(例如[2]):

$$g_k = (-1)^{1-k} \overline{h}_{1-k}, \quad k \in \mathbb{Z}$$
 (\square .15)

待会会详细地解释一下。

小波的扩张方程是:

$$\psi_{(j,l)}(t) = \sum_{k \in \mathbb{Z}} g_{k-2l} \phi_{(j+1,k)}(t)$$

$$= \sum_{k \in \mathbb{Z}} (-1)^k h_{1+2l-k} \phi_{(j+1,k)}(t)$$
(\square .16)

g_k 与 h_k 之间的关系

这里解释一下:

$$\langle \phi(t), \psi(t) \rangle = \langle \sum_{k \in \mathbb{Z}} h_k \phi_{(j,k)}(t), \sum_{k \in \mathbb{Z}} g_k \phi_{(j,k)}(t) \rangle$$

$$= \sum_{k \in \mathbb{Z}} h_k \langle \phi_{(j,k)}(t), \sum_{k \in \mathbb{Z}} g_k \phi_{(j,k)}(t) \rangle$$

$$= \sum_{k \in \mathbb{Z}} h_k \overline{g}_k = 0 \qquad (\Box.17)$$

于是, $g_k=(-1)^{1-k}\overline{h}_{1-k}$ 满足该式。当是实小波时, $g_k=(-1)^kh_{1-k}$ 也满足该式。以 Haar 小波为例,两种方法得到的 g_k 是不同的:

$$g_0 = \frac{\sqrt{2}}{2}$$
 $g_1 = -\frac{\sqrt{2}}{2}$
or $g_0 = -\frac{\sqrt{2}}{2}$ $g_1 = \frac{\sqrt{2}}{2}$

在《多分辨分析的频域分析》中的很多证明都会用到这个结论,但由于不论 g_k 和 h_k 的关系如何,都不影响我们最后的结论,因此这里就按照 [1] 里的实数小波的简化版本来写。

24 小结

本文我们了解了多分辨分析的基本定义和更普遍的扩张方程,通过扩张方程,就可以将 \mathcal{V}_{j+1} 空间的基投影为 \mathcal{V}_{j} 空间的基。但是,现在描述的各种形式并不是那么容易理解,我们还有几个步骤需要思考,比如 \mathcal{V}_{j} 空间的函数 $f_{j}(t)$ 怎么表示为 \mathcal{V}_{j+1} 空间的函数呢?其实很简单:

$$f_{j}(t) = \sum_{l \in \mathbb{Z}} a_{l} \phi_{(j,l)}(t)$$

$$= \sum_{l \in \mathbb{Z}} a_{l} \left(\sum_{m \in \mathbb{Z}} h_{m-2l} \phi_{(j+1,m)}(t) \right)$$
(\square .18)

现在还有一些问题,比如 \mathcal{V}_{j+1} 空间的函数 $f_{j+1}(t)$ 如何投影到 \mathcal{V}_j 空间呢? 这个问题我们留到后文再讲,其实自己推导也不会很难。

参考文献

- [1] Ruch D K , Fleet P V . Wavelet Theory: An Elementary Approach with Application[M]. John Wiley & Sons, 2009.
- [2] 冉启文. 小波变换与分数傅里叶变换理论及应用 [M]. 哈尔滨工业大学出版社, 2001.
- [3] Ingrid Daubechies. 小波十讲 [M]. 国防工业出版社, 2004.